[Paper review 35]

A Stochastic Decoder for Neural Machine Translation

(Schulz, et al., 2018)

[Contents]

- 1. Abstract
- 2. Introduction
- 3. Neural Machine Translation
- 4. Stochastic Decoder
 - 1. Motivation
 - 2. Model formulation
 - 3. Neural Architecture
- 5. Inference and Training
 - 1. Analysis of the Training Procedure

1. Abstract

present a deep generative model of **machine translation**, which incorporates **"a chain of LATENT VARIABLE"**

2. Introduction

Machine Translation

- based on encoder-decoder framework, complex neural systems are being developed!
- ex) use of convolutions, self-attention layers...
- great performance improvements over classical RNNs!

But there hasn't been much effort to change the **probabilistic model**

• ex) sentence-level latent Gaussian variable (Zhang et al, 2016)

Not only does translation may vary across translators, but also within a single translator!

But NMT are incapable of capturing these variations!

- only one output for a given source sentence
- $P(y_1^n \mid x_1^m) = \prod_{i=1}^n P(y_i \mid x_1^m, y_{< i}).$

Proposal of this paper : augment NMT with **"latent sources of variation"** (to be able to represent more of the variation)

Contribution

- introduce NMT that is capable of capturing word level variation
- motivate the use of **KL scaling**
- improvements achievable with the proposed model

3. Neural Machine Translation

likelihood : $P\left(y_{1}^{n}\mid x_{1}^{m}
ight)=\prod_{i=1}^{n}P\left(y_{i}\mid x_{1}^{m},y_{< i}
ight)$.

notation

- source sentence : $x_1^m = (x_1, \dots, x_m)$.
- target sentence : y_1^n .
- Encoder : bi-LSTM Decoder : LSTM
- decoder state at the i^{th} target position : t_i

How does it work?

$$egin{aligned} & [h_1,\ldots,h_m] = ext{RNN}(x_1^m) \ & ilde{t}_i = ext{RNN}(t_{i-1},y_{i-1}) \ & e_{ij} = v_a^ op ext{tanh} \Big(W_a[ilde{t}_i,h_j]^ op + b_a \Big) \ & lpha_{ij} = rac{ ext{exp}(e_{ij})}{\sum_{j=1}^m ext{exp}(e_{ij})} \ & c_i = \sum_{j=1}^m lpha_{ij}h_j \ & t_i = W_t[ilde{t}_i,c_i]^ op + b_t \ & \phi_i = ext{softmax}(W_ot_i+b_o) \end{aligned}$$

- trained using **MLE**
 - loss function : **cross entropy**
 - probability vector : by **softmax**

4. Stochastic Decoder

introduce stochastic decoder model for capturing word-level variation

4-1. Motivation

Even within a single translator, variation may occur!

Previous work : modeling the latent variation (using sentence-level Gaussian Variable)

- however there is more to latent variation than a unimodal density can capture
- "Multimodal modelling" of these variation is needed!
- ightarrow consider **word level** variation

4-2. Model formulation

"latent Gaussian variable" for each target position

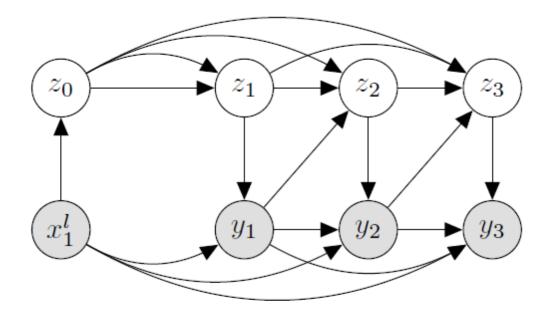
- depends on...
 - (1) previous latent states
 - (2) decoder state

Thus, the likelihood could be written as....

 $P\left(y_{1}^{n} \mid x_{1}^{m}
ight) = \int p\left(z_{0} \mid x_{1}^{m}
ight) \mathrm{d}z_{0}^{n} imes \quad \prod_{i=1}^{n} p\left(z_{i} \mid z_{< i}, y_{< i}, x_{1}^{m}
ight) P\left(y_{i} \mid z_{1}^{i}, y_{< i}, x_{1}^{m}
ight)$

• contains z_0 (= 0th latent variable), which is meant to initialize the chain of latent variables based solely on the source sentence

(previous sentence based model ONLY used that term!)



(a)

- stochastic decoder model
 - (= generator model)

$$egin{aligned} &Z_0 \mid x_1^m \sim \mathcal{N}\left(\mu_0, \sigma_0^2
ight) \ &Z_i \mid z_{< i}, y_{< i}, x_1^m \sim \mathcal{N}\left(\mu_i, \sigma_i^2
ight) \ . \ &Y_i \mid z_0^i, y_{< i}, x_1^m \sim ext{Cat}(\phi_i) \end{aligned}$$

• μ and σ are predicted by NN architecture

4-3. Neural Architecture

It is DGM (deep generative models)

- :: model contains latent variable & parameterized by NN
- use reparameterization trick!
 - to enable back-prop inside a stochastic computation graph
 - $\circ \ z = \mu + \sigma \odot \epsilon \quad \epsilon \sim \mathcal{N}(0, \mathrm{I}).$

Structure

- one-hidden layer NN
- activation function : tanh
- softplus transformation to the output of the standard deviation's network (for positivity)

.

$$egin{aligned} & \mu_0 = f_{\mu_0} \left(h_m
ight) \quad \sigma_0 = f_{\sigma_0} \left(h_m
ight) , \ & \mu_i = f_{\mu} \left(t_{i-1}, z_{i-1}
ight) \quad \sigma_i = f_{\sigma} \left(t_{i-1}, z_{i-1}
ight) \end{aligned}$$

Each latent variable is sampled by $z=\mu+\sigma\odot\epsilon \quad \epsilon\sim\mathcal{N}(0,\mathrm{I})$

- then, used to modify the update of decoder hidden state t_i

 ${ ilde t}_i = \mathrm{RNN}(t_{i-1},y_{i-1},z_i).$

5. Inference and Training

use Variational Inference to train the model

```
( = maximization of ELBO )
```

ELBO is maximized w.r.t

- model parameters θ (= parameter of p(x))
- variational parameters λ (= parameter of q(z))

NLP models using DGMs

- mostly use only ONE latent variable
- using several variables : MFVI (assumption : independency between latent variables)
- this paper : more FLEXIBLE (assign dependency)

 $q(z_0^n) = \prod_{i=1}^n q\left(z_i \mid z_{< i}
ight).$

Stochastic decoder of this paper = "Stack of conditional DGMs"

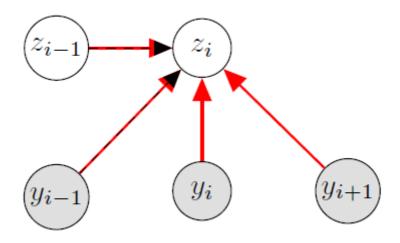
(thus consists of nested positional ELBOS)

 $\operatorname{ELBO}_0 + \mathbb{E}_{q(z_0)} \left[\operatorname{ELBO}_1 + \mathbb{E}_{q(z_1)} \left[\operatorname{ELBO}_2 + \ldots \right] \right].$

- where target position i in ELBO is $\operatorname{ELBO}_{i} = \mathbb{E}_{q(z_{i})} \left[\log p\left(y_{i} \mid x_{1}^{m}, y_{< i}, z_{< i}, z_{i}\right) \right] - \operatorname{KL} \left(q\left(z_{i}\right) \| p\left(z_{i} \mid x_{1}^{m}, y_{< i}, z_{< i}\right)\right).$
 - first term : reconstruction or likelihood term
 - second term : KL term (= function of 2 Gaussians can be solved analytically)

Inference model

- use NN to compute variational distributions
- (during training) both source & target are observed
- z_i .
 - 1) condition on information available to the generation network



• 2) condition on the target words

(${ ilde t}_i = {
m RNN}(t_{i-1},y_{i-1},z_i)$)

- produces additional representations of the target sentence
 - 1st rep) encodes the target sentence bidirectionally
 - 2nd rep) encoding the target sentence in reverse

 $[b_1,\ldots,b_n] = \operatorname{RNN}(y_1^n)$

- $[r_1,\ldots,r_n]=\mathrm{RNN}(y_1^n)$.
- same as generative model....
 - also use one-hidden layer NN
 - each latent variable is sampled by $z=\mu+\sigma\odot\epsilon$ $\epsilon\sim\mathcal{N}(0,\mathrm{I})$

 $egin{aligned} &\mu_0 = g_{\mu_0} \; (h_m, b_n) \ &\sigma_0 = g_{\sigma_0} \; (h_m, b_n) \ &\mu_i = g_\mu \; (t_{i-1}, z_{i-1}, r_i, y_i)^{ op} \ &\sigma_i = g_\sigma \; (t_{i-1}, z_{i-1}, r_i, y_i) \end{aligned}$

(during training, all samples are sampled from inference network)

(sample from the generator only at the test time!)

5-1. Analysis of the Training Procedure

does not work well in practice... WHY?

- ∵our model use a STRONG generator
- (= do not need to rely on latent information)

(Can be understood by the KL-term below)

For latent-variable to be informative, we should have high mutual information :

 $I(Z;Y) = \mathbb{E}_{p(y)}[\mathrm{KL}(p(Z \mid Y) \| p(Z))].$

 $I(Z;Y) = \mathbb{E}_{p(y)}[\operatorname{KL}(p(Z \mid Y) || p(Z))].$

- we approximate $p(Z \mid Y)$ with $q(Z \mid Y)$
- KL-term in ELBO is upper bound on mutual information
- ELBO can be maximized, by (1) setting KL-term to 0 and (2) maximizing reconstruction term
 → ∴ (at the beginning of training) variational approximation does not yet encode much
 useful information!

(= during the initial learning stage, KL-term barely contributes to ELBO (our objective))