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1. Abstract  
present a deep generative model of machine translation, which incorporates "a chain of 
LATENT VARIABLE"

 

2. Introduction  
Machine Translation

based on encoder-decoder framework, complex neural systems are being developed!
ex) use of convolutions, self-attention layers...
great performance improvements over classical RNNs!

 

But there hasn't been much effort to change the probabilistic model

ex) sentence-level latent Gaussian variable ( Zhang et al, 2016 )

 

Not only does translation may vary across translators, but also within a single translator!

But NMT are incapable of capturing these variations! 

only one output for a given source sentence
.
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Proposal of this paper : augment NMT with "latent sources of variation"
( to be able to represent more of the variation )

 

Contribution

introduce NMT that is capable of capturing word level variation
motivate the use of KL scaling
improvements achievable with the proposed model

 

3. Neural Machine Translation  
likelihood : .

notation

source sentence : .
target sentence : .
Encoder : bi-LSTM
Decoder : LSTM
decoder state at the  target position : 

 

How does it work?

.

 

trained using MLE

loss function : cross entropy
probability vector : by softmax

 

4. Stochastic Decoder  
introduce stochastic decoder model for capturing word-level variation

 

4-1. Motivation  
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Even within a single translator, variation may occur!

Previous work : modeling the  latent variation ( using sentence-level Gaussian Variable)

however there is more to latent variation than a unimodal density can capture
"Multimodal modelling" of these variation is needed!

  consider word level variation

 

4-2. Model formulation  
"latent Gaussian variable" for each target position

depends on...

(1) previous latent states
(2) decoder state

 

Thus, the likelihood could be written as....

 

contains  ( =  latent variable  ) , which is meant to initialize the chain of latent variables 
based solely on the source sentence

( previous sentence based model ONLY used that term!)

 

stochastic decoder model

( = generator model )

.
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 and  are predicted by NN architecture

 

4-3. Neural Architecture  
It is DGM (deep generative models)

 model contains latent variable & parameterized by NN

use reparameterization trick!

to enable back-prop inside a stochastic computation graph 
.

 

Structure

one-hidden layer NN

activation function : tanh

softplus transformation to the output of the standard deviation's network ( for positivity)

.

.

 

Each latent variable is sampled by 

then, used to modify the update of decoder hidden state 

.

 

5. Inference and Training  
use Variational Inference to train the model 

( = maximization of ELBO )

 

ELBO is maximized w.r.t 

model parameters  ( = parameter of  )
variational parameters   ( = parameter of  )

 

NLP models using DGMs

mostly use only ONE latent variable

using several variables : MFVI ( assumption : independency between latent variables)

this paper : more FLEXIBLE ( assign dependency )

.

 

Stochastic decoder of this paper = "Stack of conditional DGMs"
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( thus consists of nested positional ELBOS )

.

where target position  in ELBO is 
.

first term : reconstruction or likelihood term
second term : KL term ( = function of 2 Gaussians .... can be solved analytically )

 

Inference model

use NN to compute variational distributions

( during training ) both source & target are observed

.

1) condition on information available to the generation network

2) condition on the target words 

(  )

produces additional representations of the target sentence

1st rep ) encodes the target sentence bidirectionally
2nd rep) encoding the target sentence in reverse

.

same as generative model....

also use one-hidden layer NN

each latent variable is sampled by 

.

( during training, all samples are sampled from inference network )

( sample from the generator only at the test time! )

 

5-1. Analysis of the Training Procedure  
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does not work well in practice... WHY?

 our model use a STRONG generator

( = do not need to rely on latent information )

 

( Can be understood by the KL-term below )

For latent-variable to be informative, we should have high mutual information : 

.

.

we approximate  with 

KL-term in ELBO is upper bound on mutual information

ELBO can be maximized, by (1) setting KL-term to 0 and (2) maximizing reconstruction term

  ( at the beginning of training ) variational approximation does not yet encode much 
useful information!

( = during the initial learning stage, KL-term barely contributes to ELBO (our objective) )
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